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Within the framework of a one-velocity, one-temperature model of the medium, the natural convective motion 

of a dusty gas is investigated numerically in a plane region of square cross section in the case of side heating. 

The problem of gas convection in a region of square cross section with side heat supply has long attracted 

the attention of research workers from the standpoint of studying the nonstationary characteristics of convection 

and specific features of the hydrodynamic field. Detailed information on works that use the Boussinesq 

approximation is given in [1-3 ]. In [4-6 ] the Navier-Stokes equations were solved for a compressible gas. At the 

present time this problem is considered as a standard test to verify various numerical procedures intended for 

describing natural convective flows [7 ]. 

In the present paper we investigate the extension to the case of a disperse medium (a compressible gas 

with solid particles), which is considered in a one-velocity, one-temperature approximation. 

1. Let a plane cavity of square cross section be filled with a dusty gas. The side walls have constant but 

different temperatures, whereas the lower and upper walls are thermally insulated. In an initially stagnant medium 

natural convective motion is induced by the force of gravity. The problem is to study the specific features of the 

convective processes and to elucidate the part played by the dispersed impurity. 
Within the confines of the basic assumptions of the mechanics of heterogeneous media [8] the gas and 

particles are considered as interacting and interpenetrating solid media. The carrier phase is a viscous compressible 

heat-conducting gas. 
The particles are considered to be small enough for the disperse mixture to be considered within the scope 

of a one-velocity, one-temperature model [8 ]. The collisions of particles and their diffusion, evaporation, adhesion, 

and fragmentat,an are not taken into account. 
In dimensionless variables, the equations'that describe the flow of a gas suspension have the form 

d_p_ dU 1 VP + 
dt = - p V U '  P - - p f T ,  P =Pl + P 2 ,  P d~--  yM 2 

( ) dT 
1 1 (VU) + Pg,  (Pl q- 72P2) dt vu+ v --=-(r- l)eVU+ 

opc p2 (1) 
+ AT ,  dt + V ( p c U ) = 0 '  c -  p , 

where c is the mass concentration of particles; g -- (0; -1) is the volumetric force acceleration vector. 
In changing to dimensionless variables we use the following scales: length L (the side of the region 

considered), velocity ~ (g,is the free fall acceleration), time V-LTg, density Pl0, temperature T O (Pl0 and TO are 

the initial density and temperature of the gas near the cold vertical boundary), pressure P0 -- Rpl0T0 (R = RO/tZ, 

R0 is the universal gas constant,/~ is the molecular weight of the gas). Equation (1) contains the dimensionless 
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complexes M = dLg/TRTo, Re = L v~Lgpl0/~/, Pr  = cp r//2, which are the Much, Reynolds,  and Prandt l  numbers,  

?' = ce/cv; ~'2 = c2/cp. 
System (1) is solved in the Cartesian rectangular coordinate system, the x axis coincides with the lower 

boundary  of the region, and the y axis coincides with the left vertical boundary.  The  temperature  1 + T a is 

maintained on the left wall (x = 0) and the temperature 1 on the right; Ta is the dimensionless difference of 

temperatures.  The  lower and upper boundaries are thermally insulated: OT/Oy = 0 at y = 0 and y = 1. The  no-slip 

condition (U = 0) is fulfilled on all the boundaries. 

At the initial instant the linear distribution of temperature in a stagnant medium is assigned: T(0, x, y) = 

1 + To(l-x), P(0, x, y) --- 1, p l (0 ,  x, y)-- P /T ,  corresponding to the stationary state in the absence of the force of 

gravity. Initially the concentration of dust is constant within the entire region: c(0, x, y) = co. Under  these initial 

and boundary  conditions the concentration turns out to be independent  of time, i.e., the last equation in system 

(1) has a trivial solution: c(t, x, y) = co. 

In contrast  to the popular model of a passive impurity in system (1), the effect of particles on the motion 

of the gas due to their  weight and heat capacity is taken into account. Instead of the density and heat capacity of 

the gas the system of equations includes the effective parameters.  This is noted in [9 ]. 

2. System (1) was solved numerically with the aid of an implicit difference scheme [5, 6 ] on a three- 

dimensional 21 • 2I grid; the value of the time step ~, interrelated with the space step h, corresponded *o the 

Couran t  n u m b e r  Ku = r/hM -- 4. T h e  accuracy of the calculations was control led from the  mass balance 
1 1 

f f pdxdy, which was preserved within 1%. The following values of the dimensionless parameters  were used: M -- 
0 0  

0.1; Re = 250; Pr  = 0.7; 7 = 1.4; Ta = 0.5; 72 = 0-10; co = 0-0.7. At 72 = 0, co = 0 the problem is reduced to the 

s tudy of pure gas convection and coincides with that investigated in [5, 6 ]* . Calculations were made on an 

ES-1055M electronic computer; each version required about 40 minutes of machine time. 

3. The  force of gravity induces convective circulational motion in a gas with an ascending flow near  a hot 

wall and a descending flow near  a cold wall. The  introduction of impurity into the gas c h a n g e s t h e  properties of 

the medium. Two additional parameters appear: co, which is proportional to the total mass of the particles, and 72, 

which is proportional to their heat capacity. 

To reveal the influence of each parameter  on the process dynamics,  we will analyze  the results of 

calculations of the following limiting regimes. In the first one, the impurity is absent,  P2 = pco = 0. In the second 

one, particles are introduced with the parameters co = 0.4, 72 -- 2 . 0 .  Two other  versions are purely hypothetical,  

namely, the particles have heat capacity with 72 = 2.0 but do not have weight (in the continuity and momentum 

equations of system (1) the medium dens i typ  was replaced by the gas density Pl)  or, conversely, they have weight 

but do not contribute to the heat capacity: co = 0.4, ?'2 = 0. 

In Fig. I the change in the mean Nusselt number  on the hot wall 

1 OT 
N u = - 1 / T  a f -~xdY 

0 

with time is shown for all of the regimes indicated. Curve 1, corresponding to pure gas convection, completely 

coincides with predictions [5, 6 ]. Account for one of the factors, for example, just the thermal (curve 3) or just the 

weight (curve 4) factor, leads to a heat flux from the hot wall to the gas that exceeds the value for a pure gas (curve 

t ) .  Since the effect of both factors leads to enhancement  of heat transfer,  Nu attains the greatest  values on 

introduction of particles (curve 2). 

Within this very limit, we made a comparison with the characteristics of a stat ionary flow investigated in the 
Boussinesq approximation [7 ]. In particular, we obtained that at Pr  = 0.71 and Ra = 104 (Ra is the Rayleigh 

2 number  expressed in terms of the parameters used as Ra = Pr .  Gr  = Pr- Re �9 Ta (see Eq. (5)),  the computed 
value for the Nusselt  number  on the left boundary Nu = 2.10 corresponds to the test value Nu* = 2.26 [7 ], 
accurate to 8 %. 
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Fig. 1. Nusselt number Nu on a hot vertical boundary vs time t for co = 0, 72 

= 0 (1), for co = 0.4, 72 = 2.0 (2), in the case of the thermal effect of particles 

with 72 --- 2.0 (c O = 0.4) (3) and the weight effect of particles with co = 0.4, 72 

= 0 (4). 

The mechanism of the influence of particles on heat transfer follows from the analysis of the internal 

structure of developed flow. In Fig. 2a the spatial distribution of the vertical velocity component v(x; 0.5) is given 

in the central horizontal section at time t - 30, when the motion becomes stationary. It is seen that the "inclusion" 

of the weight effect of the particles slightly changes the form of the velocity profile but substantially increases the 

velocity scale (compare curves 1 and 4). This is caused by the increase in the Archimedian force in a dusty medium 

as compared with a pure gas because of the greater density of the medium; the difference between the densities of 

the medium near the cold and hot walls increases by 1/(l-c0) times (p = P l/(l-c0)).  The intensification of flow 

leads, in turn, to the enhancement of convective heat transfer. 

Let us consider the thermal effect of particles. The effective heat capacity of a gas suspension is higher 

than that of a pure gas. Therefore, a mixture ascending along a hot wall is heated up more slowly, whereas that 

descending near a cold boundary cools off more slowly. This is seen from Fig. 2b, in which the temperature 

distribution T(x; 0.5) in the central section is given. As the effective heat capacity of the medium rises, the 

temperature curves near the boundaries become steeper (compare curves 1 and 3), the temperature gradients 

increase, and, accordingly, the Nu number, which is determined by them, grows (Fig. 1). Because of the increase 

in the temperature inhomogeneily near the walls, the density in the boundary zones changes more sharply. The 

dynamic boundary layers become narrower (Fig. 2a), the main motion occurs near the vertical boundaries, and 

there is virtually a stagnant mixture at the center. 
Thus, account for the heat capacity of particles leads, first, to enhancement of convective heat transfer and, 

second, to diminution of the vertical boundary layers and enlargement of the stationary core at the center. 

As the concentration of the impurity grows, the influence of heat capacity on the gas increases. With rather 
large additives co -" 0.7 the dust intensifies the occurring processes so strongly that rearrangement in the internal 

flow structure occurs. Similar changes are observed upon increase in 72. For a dusty medium with a high 

concentration of impurity (co -- 0.7, 72 --- 2.0, see Fig. 3b) or with an increased heat capacity of the particles (co = 

0.2, 72 -- 10.0, see Fig. 3c) secondary structures develop inside of the flow, which is not observed in a pure gas 

(Fig. 3a). The nature of their formation is the same. As co or 72 increases, the horizontal temperature differences 
near the side boundaries grow. Even at a small distance from the hot wall the gas suspension layers are rather 

cold. Ascending upward and moving along the upper boundary, the mixture cools off rapidly, and its density 
increases. The heavy mixture sinks by gravity, not reaching the right vertical boundary. Vortical motion is formed 
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Fig. 2. Distribution of the vertical velocity component  v (x, 0.5) (a) and the 

tempera ture  T (x, 0.5) (b) in the central horizontal section at t ime t = 30 for 

co -- 0, 72 = 0 (1), for co = 0.4, 72 = 2.0 (2), in the case of the thermal  effect 

of particles with 72 = 2 .0  (C O = 0 .4)  (3) and the weight effect of particles with 

co = 0.4, 72 = 0 (4). 
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Fig. 3. Velocity field at t ime t = 30 for co = 0, 72 = 0 (a), co = 0.7, 72 = 2.0 

(b) and co -- 0.2, 72 = 10.0 (c). 

near  the lef t -hand hot wall. A similar process occurs near  the r ight -hand side boundary.  The  gas suspension that  

moves to the lef t -hand boundary  is heated rapidly,  expands,  and,  not reaching the boundary ,  ascends upward 

under  the action of buoyancy  and  forms a vortex near  the r ight -hand cold boundary.  A similar two-vortex structure 

was discovered in [10] in a pure gas (Pr = 0.7) when the Grashof  number  increased to Gr  --- 105. 

4. The  laws governing dusty gas convection are characterized by modified similarity numbers  that  take into 

account the presence of impurity.  We will obtain their  expressions on the basis of the Boussinesq approximation.  

Assuming in the sys tem of equations for a gas suspension (1), writ ten in dimensional  form, that  the 

t e m p e r a t u r e  and  p r e s s u re  dev ia te  by  a small  amoun t  T'  a n d  P'  f rom the i r  m e a n  values  a n d  t ak ing  the  

compressibil i ty of the medium into account only in the lift force, we obtain 

VU = 0 ,  dt  - + VU' - f lgT '  Po = PlO + P20, 

d T  
dt  

1 A AT', (2) 
1 + c  o 0 , 2 -  1) PoCp 
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Fig. 4. A plot of the Nusselt number  Nu on a hot boundary vs the Grashof 

number  G r ,  in a pure gas constructed from the expression Nu = 0.12Gr,  ~ 

given in [4 ]. The  results of the present authors for a gas suspension with ~t 2 

-- 1.0 and co = 0.0, 0.2, 0.4, 0.6 are denoted by dots. 

where P0 is the medium density at equilibrium; fl = -1/pO(Op/OT)p is the thermal expansion coefficient of the 

medium. 

We introduce the effective coefficients of kinematic viscosity v ,  and thermal diffusivity ~ ,  in the following 

way: 

v . =  & = ( 1 - c 0 )  v v =  r/ 
PO ' /910 ' 

1 2 1 - c o 2 

r * =  1 + c  o(y2 1) PoCe 1 + c  o(yz  1) x '  x , (3) - -  - -  PlO Cp 

where v and x are the corresponding parameters of a pure gas. The use of v ,  and r .  reduces Eqs. (2) to the form 

of the gas equations, and the modified similarity numbers Pr .  and Gr . ,  constructed on their  basis, permit one to 

consider the dusty medium as a gas with these effective parameters: 

v, gflTa La 1 
P r , - x , - ( 1  + c  0 ( y 2 -  1 ) ) P r ,  G r , - - - - T - - -  Gr  (4) 

v, (1 - Co) 2 " 

The  numbers Pr  and Gr  characterize the gas phase; in the case of a perfect gas 

Gr  = T a �9 Re 2 (5) 

and for the conditions selected Gr  -- 3.1.10 4. 

In Fig. 4 the function N u ( G r , )  is given, which is plotted for a pure gas from the expression Nu = 

0.12Gr ~ for Pr  = 0.7 [4 ]. Here  G r ,  corresponds to a pure gas. For comparison, computations were made for a 

homogeneous gas suspension with )'2 = 1.0 and co = 0.0, 0.2, 0.4, 0.6; the remaining parameters  are the previous 

ones (for the value of Y2 selected it follows from Eq. (4) that P r ,  = Pr).  The  predicted points in Fig. 4 lie rather  

close to the curve for a pure gas, testifying to the possibility of representing a disperse medium as a gas with altered 

properties in the considered range of parameters.  

The  effective parameters also characterize the formation of secondary vortices in a dusty medium (see Fig. 

3). For a medium with c O -- 0.7, Y2 = 2.0 (regime of Fig. 3b), starting from Eq. (4) we obtain that G r ,  -- 3 .5.10 5 

and P r - -  1.2. This agrees with the transient values in a pure gas [10 ]. The  flow of a gas suspension with co = 0.2 

and ),7. ~- 10.0 (Fig. 3c) is described by the values G r ,  = 4.9- 10 4 and Pr  = 2.6. 

1062 



We note that the obtained analogy between the convection of a dusty medium and of a pure gas with 

modified properties is valid only for a one-velocity, one-temperature mixture with a constant concentration of dust. 

Let us evaluate the dimensions of particles for which the model used here is applicable. Within the scope 

of the Stokes law of friction the characteristic time of the velocity relaxation of particles is determined by the formula 

~u =pO d2/18rl [8 ], and the time of their temperature relaxation by ~T =pOd2c2/122 [8 ], where p ~ do are the true 

density and the diameter of a particle. When a one-velocity, one-temperature model is used, the values of ru and 

TT should be much smaller than the characteristic time of the problem vrL--/-g. Let us estimate the value of do by ru, 

since ru and r T are close in magnitude. After some transformations, the condition pO d2/18rl << x/ZTg yields 

do << x/18e/ReL, where e = 1910/,o 0 is the ratio of the true densities of the phases. For a region of size L = 10 -2 m 

for e = 1 0  - 3  and Re = 250 we obtain that do < <  10 -4 m. A coarser impurity in which the velocity and temperature 

inertias of the particles as well as their their deposition are substantial should be considered within the framework 

of the two-velocity, two-temperature model. 

Thus, the introduction of a fine disperse impurity into a gas leads to the intensification of convective heat 

transfer and to the thinning of the boundary layers near the side boundaries. At a sufficiently large concentration 

or heat capacity of the dust a convective vortex can break into two vortices. Within the scope of the considered 

one-velocity, one-temperature model of the medium with a constant concentration of impurity, we obtained an 

analogy between the convection of a dusty gas and of a pure gas with modified similarity numbers. 

N O T A T I O N  

Pl, P, mean density and pressure of the gas; P2, mean density of the impurity; p, U = (u, v), T, density, 

velocity, and temperature of the mixture; t, time; x, y, Cartesian coordinates; g, free fall acceleration; L, side of 

the square region; M, Re, Pr, Gr, Mach, Reynolds, Prandtl, and Grashof numbers; Pr. ,Gr. ,  modified Prandtl and 

Grashof numbers; Nu, Nusselt number; Ta, difference of temperatures on the side boundaries of the region; 7 = 

ce/cv where cp and cv are the heat capacities of the gas at constant pressure and volume; )'2 = C2/r where c2 is 

the heat capacity of the impurity substance; co, impurity concentration; ~1, v, 2, r ,  coefficients of dynamic and 

kinematic viscosity, thermal conductivity, and thermal diffusivity of the gas; v., ~c., effective coefficients for the 

mixture as a whole; do, diameter of the particles, m. 
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